当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

备考2023年中考数学宁波卷变式阶梯训练:第6-10题

更新时间:2023-04-09 浏览次数:105 类型:三轮冲刺
一、第六题
二、第七题
三、第八题
  • 15. (2022·宁波) 我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗,问故米几何?”意思为: 50 斗谷子能出30斗米,即出米率为 .今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原米有米多少斗?如果设原来有米x斗,向桶中加谷子y斗,那么可列方程组为( )
    A . B . C . D .
  • 16. (2022八上·历下期中) 《九章算术》共收有246个数学问题,分为九章,其中第八章“方程”篇中记载了这样一道题:“今有甲乙二人持钱不知其数,甲得乙半而钱八十,乙得甲太半而钱亦八十.问甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱,如果甲得到乙所有钱的一半,那么甲共有钱80.如果乙得到甲所有钱的 , 那么乙也共有钱80.若设甲、乙原本各持钱x,y,则根据题意可列方程组为(    )
    A . B . C . D .
  • 17. (2022七下·新泰期末) 我国古典数学文献《增删算法统宗·六均输》中有一个“隔沟计算”的问题:“甲乙隔沟牧放,二人暗里参详.甲云得乙九只羊,多乙一倍之上.乙说得甲九只,两家之数相当.二人闲坐恼心肠,画地算了半晌.”翻译成现代文,其大意如下:甲乙两人隔一条沟放牧,二人心里暗中合计.甲对乙说:“我得到你的九只羊,我的羊就比你多一倍.”乙对甲说:“我得到你的九只羊,咱俩家的羊一样多.”两个人在沟两边闲坐,心里很烦躁,因为在地上画了半晌,也没算出来.请问甲乙各有多少只羊呢?设甲有羊x只,乙有羊y只,则正确的方程组是(  )
    A . B . C . D .
  • 18. (2023七下·泸县期中) 中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有个,甜果有个,则可列方程组为(  )
    A . B . C . D .
  • 19. (2022·宁波模拟) 《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得(    )
    A . B . C . D .
  • 20. (2024七下·黄石期末) 我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中① ;② ;③3x+ (100-x)=100;④ y+3(100-y)=100正确的有(  )
    A . 0个 B . 1个 C . 2个 D . 3个
  • 21. 《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟的方程组形式表述出来,就是 在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x的值为3,则被墨水所覆盖的图形为(   )

    A . B . C . D .
四、第九题
五、第十题
  • 29. 将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出( )

    A . 正方形纸片的面积 B . 四边形EFGH的面积 C . △BEF的面积 D . △AEH的面积
  • 30. (2019·广西模拟) 图①是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是( )

    A . (m—n)2 B . (m+n)2 C . 2mn D . m2-n2
  • 31. (2022·宁波模拟) 两个全等的矩形 和矩形 如图放置, 且 恰好过点 . 过点 平行 . 知道下列哪个式子的值, 即可求出图中阴影部分的面积( )

    A . B . C . D .
  • 32. (2022八下·河东期末) 如图,从一个大正方形中裁去面积为的两个小正方形,则剩余部分(阴影部分)的面积等于( )

    A . B . C . D .
  • 33. (2022八下·宁海期末) 如图,正方形AMNP和正方形EFGH是两个全等的正方形,将它们按如图的方式放置在正方形ABCD内,若求阴影图形的面积,则只需知道(    ) 

     

    A . △AHE的面积 B . 五边形HETNS的面积 C . △EMT的面积 D . 正方形AMNP的面积
  • 34. (2022八上·宁波期中) 如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BNMC,四块阴影部分的面积分别S1、S2、S3、S4 . 则等于( )

    A . 4 B . 6 C . 8 D . 12
  • 35. (2020七下·慈溪期末) 将一张边长为a的正方形纸片按图1方式放置于长方形ABCD内,再将长为b(b<a),宽为 的长方形纸片按图2,图3两种方式放置,长方形中未被覆盖的部分用阴影表示,设图2中阴影部分的面积为S1 , 图3中阴影部分的面积为S2 , 且S2-S1=2b,则AD-AB的值为( )

    A . 1 B . 2 C . 4 D . 无法确定

微信扫码预览、分享更方便

试卷信息