题库组卷系统-专注K12在线组卷服务
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
试题
试卷
试题
在线咨询
当前:
高中数学
小学
语文
数学
英语
科学
道德与法治
初中
语文
数学
英语
科学
物理
化学
历史
道德与法治
地理
生物学
信息技术
历史与社会(人文地理)
社会法治
高中
语文
数学
英语
物理
化学
历史
思想政治
地理
生物学
信息技术
通用技术
首页
手动组卷
章节同步选题
知识点选题
智能组卷
章节智能组卷
知识点智能组卷
细目表组卷
试卷库
同步专区
备考专区
高考专区
精编专辑
在线测评
测
当前位置:
高中数学
/
高考专区
试卷结构:
课后作业
日常测验
标准考试
|
显示答案解析
|
全部加入试题篮
|
平行组卷
试卷细目表
发布测评
在线自测
试卷分析
收藏试卷
试卷分享
下载试卷
下载答题卡
【备考2024】2023年高考数学新高考Ⅱ卷真题变式分层精准...
下载试题
平行组卷
收藏试卷
在线测评
发布测评
在线自测
答题卡下载
更新时间:2023-10-09
浏览次数:40
类型:二轮复习
试卷属性
副标题:
数学考试
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
【备考2024】2023年高考数学新高考Ⅱ卷真题变式分层精准...
数学考试
更新时间:2023-10-09
浏览次数:40
类型:二轮复习
考试时间:
* *
分钟
满分:
* *
分
姓名:
____________
班级:
____________
学号:
____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
一、原题
1.
(2023·新高考Ⅱ卷)
已知函数f(x)=
在区间
单调递增,则a的最小值为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
二、基础
2.
(2023高三上·深圳月考)
已知函数
, 则下列结论正确的是( )
A .
在
处得到极大值
B .
在
处得到极大值
C .
在
处得到极小值
D .
在
处得到极小值
答案解析
收藏
纠错
+ 选题
3.
(2023高三上·顺德月考)
已知曲线
在点
处的切线方程为
, 则( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
4.
(2023高三上·开远月考)
若函数
在
上为单调递增函数,则
的取值范围为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
5.
(2023高二下·遂宁期末)
“燃脂单车”运动是一种在音乐的烘托下,运动者根据训练者的指引有节奏的踩踏单车,进而达到燃脂目的的运动,由于其操作简单,燃脂性强,受到广大健身爱好者的喜爱.已知某一单车爱好者的骑行速度v(单位:km/h)随时间t(单位:h)变换的函数关系为
,
, 则该单车爱好者骑行速度的最大值为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
6.
(2023高二下·郫都期中)
函数
的导函数
等于( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
7.
(2022高二下·肥东期中)
下列结论正确的是( )
A .
若
, 则
B .
若
, 则
C .
若
, 则
D .
若
, 则
答案解析
收藏
纠错
+ 选题
8.
(2023高二下·清远期末)
已知函数f(x)=ln x+ax
2
-3x在(
, 3)上单调递增,则a的取值范围为( )
A .
[
, +∞)
B .
(0,
]
C .
[
, +∞)
D .
(0,
]
答案解析
收藏
纠错
+ 选题
9.
(2023高二下·成都期中)
若关于
的不等式
恒成立,则
的取值范围为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
10.
(2023高二下·成都期中)
若函数
有两个极值点,则
的取值范围为( )
A .
B .
C .
或
D .
答案解析
收藏
纠错
+ 选题
11.
(2023高二下·安徽期中)
函数
的单调递增区间是( )
A .
B .
和
C .
D .
答案解析
收藏
纠错
+ 选题
12.
(2023高二下·洛阳期中)
设函数
(其中
为自然对数的底数),若函数
至少存在一个零点,则实数
的取值范围是
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
三、提升
13.
(2023高二下·上虞月考)
已知函数
如果过点
可作曲线
的三条切线,求实数
的取值范围
( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
14.
(2023·黄埔)
已知可导函数
的导函数为
, 若对任意的
, 都有
, 且
为奇函数,则不等式
的解集为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
15.
(2022高三上·白山)
已知定义在
上的偶函数
, 其导函数为
, 若
,
, 则不等式
的解集是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
16.
(2022高二上·丽水期末)
设
,
,
, 则( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
17.
(2023高二下·高台月考)
设函数
在
上存在导数
, 对任意的
有
.若
, 则
的取值范围是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
18.
(2023高二下·浙江期中)
已知
,
,
, 其中
是自然对数的底数,则a,b,c的大小为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
19.
(2023·内江模拟)
已知函数
和
有相同的极大值,则
( )
A .
2
B .
0
C .
-3
D .
-1
答案解析
收藏
纠错
+ 选题
20.
(2023·齐齐哈尔模拟)
已知不等式
对
恒成立,则实数
的取值范围为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
21.
(2023·广州模拟)
已知偶函数
与其导函数
的定义域均为
, 且
也是偶函数,若
, 则实数
的取值范围是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
22.
(2023·大庆模拟)
函数
, 则方程
解的个数为( )
A .
0
B .
1
C .
2
D .
3
答案解析
收藏
纠错
+ 选题
23.
(2023高二下·洛阳期中)
已知函数
在
时有极值0,则
( )
A .
4
B .
11
C .
4或11
D .
以上答案都不对
答案解析
收藏
纠错
+ 选题
四、培优
24.
(2023高三上·阳江开学考)
已知函数
,
,
,
恒成立,则
的最大值为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
25.
(2022高三上·白山)
关于函数
, 有如下列结论:①函数
有极小值也有最小值;②函数
有且只有两个不同的零点;③当
时,
恰有三个实根;④若
时,
, 则
的最小值为
. 其中
正确
结论的个数是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
26.
(2023高二下·成都期中)
若关于
的不等式
的解集中恰有
个整数,则
的取值范围是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
27.
(2023高二下·浙江期中)
已知
,
,
, 则
,
,
的大小关系是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
28.
(2023·遂宁模拟)
已知函数
存在零点,则实数
的值为( )
A .
-3
B .
-2
C .
-1
D .
2
答案解析
收藏
纠错
+ 选题
29.
(2023高三下·四川模拟)
已知函数
, 函数
的图象与曲线
有3个不同的交点,其横坐标依次为
,
,
, 设
, 则
的取值范围为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
30.
(2023高二下·宁波期中)
函数
, 下列说法不正确的是( )
A .
当
时,
无极值点
B .
当
时,
存在唯一极小值点
C .
对任意
,
在
上不存在极值点
D .
存在
,
在
上有且只有一个零点
答案解析
收藏
纠错
+ 选题
微信扫码预览、分享更方便
详情
试题分析
(总分:
0
)
总体分析
题量分析
难度分析
知识点分析
试卷信息