当前位置: 初中数学 /北师大版(2024) /八年级上册 /第一章 勾股定理 /3 勾股定理的应用
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

【培优版】北师大版数学八上1.3勾股定理的应用 同步练习

更新时间:2024-07-10 浏览次数:33 类型:同步测试
一、选择题
  • 1. (2023八上·从江开学考) 如图,圆柱底面半径为 , 高为 , 点分别是圆柱两底面圆周上的点,且在同一母线上,用一根棉线从点顺着圆柱侧面绕圈到点,则这根棉线的长度最短为( )

    A . B . C . D .
  • 2. (2020八上·运城期中) 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用 表示直角三角形的两直角边 ,下列四个说法:① ,② ,③ ,④ .其中说法正确的是(   )

    A . ①③ B . ①②③ C . ①②④ D . ①②③④
  • 3. (2020八上·龙岗月考) 勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可用其面积关系验证勾股定理.图2是由图1放入矩形内得到的, .点D,E,F,G,H,I都在矩形 的边上,则矩形 的面积为(    ).

    A . 288 B . 400 C . 432 D . 440
  • 4. (2023八上·黄岛期中) 《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是(  )

    A . 50.5寸 B . 52寸 C . 101寸 D . 104寸
  • 5. (2023八上·埇桥期中) 如图,在长方体盒子中, , 长为10cm的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触.当木棒的端点I在长方形ABCD内及边界运动时,GJ长度的最小值为( )

    A . B . 3cm C . D . 5cm
  • 6. (2023八下·黄埔期中) 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为 尺,则可列方程为(  )
    A . B . C . D .
  • 7. (2022八上·龙岗期末) 勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一.它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.如图,秋千静止时,踏板离地的垂直高度 , 将它往前推处时(即水平距离),踏板离地的垂直高度 , 它的绳索始终拉直,则绳索的长是(  )

    A . B . C . 6 D .
  • 8. (2022八下·兴仁月考) 现有一楼房发生火灾,消防队员决定用消防车上的云梯救人,如图(1)已知云梯最多只能伸长到15m,消防车高3m.救人时云梯伸长至最长,在完成从12m高处救人后,还要从15m高处救人,这时消防车要从原处再向着火的楼房靠近的距离 为(    )

     

    A . 3米 B . 5米 C . 7米 D . 9米
二、填空题
  • 9. (2023八上·菏泽经济技术开发月考) 如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为2米,顶端距离地面1.5米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2.4米,则小巷的宽度为米.

  • 10. (2023八下·潼关期末) 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞米.

  • 11. (2024八上·深圳期末) 某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯.已知楼梯总高度5米,楼梯长13米,主楼道宽2米;这种红色地毯的售价为每平方米30元,其侧面如图所示,则购买地毯至少需要 元.

  • 12. (2024八上·榆树期末) 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的大意是:如图,有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个水池的深度是尺.

      

  • 13. (2022八上·顺义期末) 如图是某路口处草坪的一角,当行走路线是时,有人为了抄近道而避开路的拐角 , 于是在草坪内走出了一条不该有的捷径路.某学习实践小组通过测量可知,的长约为6米,的长约为8米,为了提醒居民爱护草坪,他们想在A,处设立“踏破青白可惜,多行数步无妨”的提示牌.则提示牌上的“多行数步”是指多行米.

三、解答题
  • 14. (2021八上·九台期末) 如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男孩拽着绳子另一端向右走,绳端从移动到 , 同时小船从移动到 , 且绳长始终保持不变.三点在一条直线上, . 回答下列问题:

    1. (1) 根据题意可知: (填“>”、“<”、“=”).
    2. (2) 若米,米,米,求小男孩需向右移动的距离(结果保留根号).
  • 15. (2021八上·江津期中) 为了丰富少年儿童的业余生活,某社区要在如图所示的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于点A,DB⊥AB于点B,已知AB=5千米,CA=3千米,DB=2千米,试问:

    1. (1) 图书室E应该建在距点A多少千米处,即AE=千米,才能使它到两所学校的距离相等?
    2. (2) 证明上题中的结论.
  • 16. (2023八上·萧县期中) 学校正在增加绿化区域,种植花草树木,提高校园的绿化覆盖率,准备在四边形的空地上种植花卉,如图所示, , 求四边形的面积.

  • 17. (2021八下·潜江期末) 如图,在一条东西走向河流的一侧有一村庄 河边原有两个取水点 其中 由于某种原因,由 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点 在同一条直线上),并新修一条路 测得 千米, 千米, 千米.

    1. (1) 问 是否为从村庄 到河边的最近路.请通过计算加以说明;
    2. (2) 求新路 比原路 少多少千米.
  • 18. (2021八上·碑林期末) 如图,曲柄连杆装置是很多机械上不可缺少的,曲柄 (定长)绕固定点 做圆周运动,连杆 (定长)拉动活塞做往复运动.如图1,当曲柄的 端运动到最右边时( 三点共线), 的长为 .如图2,当曲柄的 端运动到最左边时(点 三点共线), 的长为 .

    1. (1) 求曲柄 和连杆 的长;
    2. (2) 如图3,当 时,求 的长.
  • 19. (2021八上·滕州月考) 如图,小明家在一条东西走向的公路 北侧 米的点A处,小红家位于小明家北 米( 米)、东 米( 米)点B处.

    1. (1) 求小明家离小红家的距离
    2. (2) 现要在公路 上的点P处建一个快递驿站,使 最小,请确定点P的位置,并求 的最小值.
  • 20. (2020八上·青山期中) 阅读材料,回答问题:
    1. (1) 中国古代数学著作图 周髀算经 有着这样的记载:“勾广三,股修四,经隅五.” 这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为 上述记载表明了:在 中,如果 ,那么a,b,c三者之间的数量关系是:
    2. (2) 对于这个数量关系,我国汉代数学家赵爽根据“赵爽弦图” 如图2,它是由八个全等直角三角形围成的一个正方形 ,利用面积法进行了证明.参考赵爽的思路,将下面的证明过程补充完整:

      证明:

      整理得

    3. (3) 如图3,把矩形ABCD折叠,使点C与点A重合,折痕为EF,如果 ,求BE的长.

微信扫码预览、分享更方便

试卷信息