(Ⅰ)求抛物线的解析式;
(Ⅱ)若抛物线交y轴于点C,在抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由;
(Ⅲ)在抛物线第二象限的图象上是否存在一点P,使得△PBC的面积最大?若存在,请直接写出点P的坐标和△PBC面积的最大值;若不存在,请说明理由.
(Ⅰ)当x1=﹣1,x2=3时,求点E , 点A的坐标;
(Ⅱ)①若顶点E在直线y=x上时,用含有b的代数式表示c;
②在①的前提下,当点A的位置最高时,求抛物线的解析式;
(Ⅲ)若x1=﹣1,b>0,当P(1,0)满足PA+PE值最小时,求b的值.
①当折叠后 与 重叠部分的图形为三角形时,请写出 与 的函数关系式,并直接写出 的取值范围;
②当重叠部分面积最大时,把 绕点 旋转,得到 ,点 的对应点分别为 ,连接 ,求 面积的最大值(直接写出结果即可).
(Ⅰ)点C在第一象限内,AC x轴,将线段AB进行适当的平移得到线段DC , 点A的对应点为点D , 点B的对应点为点C , 连接AD , 若三角形ACD的面积为12,求线段AC的长;
(Ⅱ)在(Ⅰ)的条件下,连接OD , P为y轴上一个动点,若使三角形PAB的面积等于三角形AOD的面积,求此时点P的坐标.
如图2,作B关于直线l的对称点B′,连结AB′与直线l交于点C , 点C就是所求的位置.
证明:如图3,在直线l上另取任一点C′,连结AC′,BC , B′C′,
∵直线l是点B , B′的对称轴,点C , C′在l上,
∴CB= ▲ , C′B= ▲ ,
∴AC +CB=AC+CB′= ▲ .
在△AC′B′,
∵AB′<AC′+C′B′,
∴AC+CB<AC′+C′B′即AC+CB最小.
本问题实际上是利用轴对称变换的思想,把A , B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决(其中C在AB′与l的交点上,即A , C , B′三点共线).本问题可归纳为“求定直线上一动点与直线外两定点的距离和的最小值”的问题的数学模型.
拓展应用:如图,等腰直角△ABC中,∠ACB = 90°,BD平分∠ABC交AC于D , 点P是BD上一个动点,点M是BC上一个动点,请在图5中画出PC + PM的值最小时P的位置.(可用三角尺)