当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023年中考数学探究性试题复习17 轴对称

更新时间:2023-05-24 浏览次数:62 类型:三轮冲刺
一、综合题
    1. (1) 【感知】如图①,将沿过点D的直线折叠,使点A落在边上的点F处,得到折痕 , 连结 . 若 , 则四边形的周长为
    2. (2) 【探究】如图②,将四边形沿GE折叠,点A、D的对应点分别为 , 点恰好落在边上.

      求证:四边形为菱形.

    3. (3) 若 , 则的面积为
  • 2. (2023·龙岗模拟) 综合与探究

    在矩形边上取一点 , 将沿翻折,使点恰好落在边上的点处.

    1. (1) 如图①,若 , 求的度数;
    2. (2) 如图②,当 , 且时,求的长;
    3. (3) 如图③,延长 , 与的角平分线交于点于点 , 当时,请直接写出的值.
  • 3. (2023九下·秦淮月考) 中, , 用这两个直角三角形研究图形的变换.

     

    1. (1) 【翻折】如图1,将沿线段翻折,连接 , 下列对所得四边形的说法正确的是.

      平分 , ②互相平分,③ , ④四点共圆.

    2. (2) 【平移】
      如图2,将沿线段向右平移,使点移到的中点,连接 , 请猜想四边形的形状,并说明理由.
    3. (3) 【旋转】如图3,将绕点逆时针方向旋转,使 , 连接 , 则旋转角为°,cm.
    1. (1) 【问题情境】如图1,四边形ABCD是正方形,点E是AD边上的一个动点,以CE为边在CE的右侧作正方形CEFG,连接DG、BE,则DG与BE的数量关系是
    2. (2) 如图2,四边形ABCD是矩形,AB=2,BC=4,点E是AD边上的一个动点,以CE为边在CE的右侧作矩形CEFG,且CG:CE=1:2,连接DG、BE.判断线段DG与BE有怎样的数量关系和位置关系,并说明理由;
    3. (3) 【拓展提升】如图3,在(2)的条件下,连接BG,则2BG+BE的最小值为.
  • 5. (2023·惠水模拟) 如图,平行四边形中,边上的一点,连接 , 以为对称轴作的轴对称图形.

    1. (1) 动手操作

      当点正好落在边上时,在图①中画出的轴对称图形 , 并判断四边形的形状是      ▲      

    2. (2) 问题解决

      如图②,当点是线段中点,且时,求的长;

    3. (3) 拓展探究

      如图③,当点在同一直线上,且时,求的长.

  • 6. (2023八下·晋安期中) 在一个数学活动中,若身旁没有量角器或者三角尺,又需要作的角,可以采用如下的方法:

    【操作感知】

    第一步:对折矩形纸片 , 使重合,得到折痕 , 把纸片展开.

    第二步;再一次折叠纸片,使点落在上,并使折痕经过点 , 得到折痕 , 同时得到线段(如图1).

     

    1. (1) 【猜想论证】
      写出图1中一个的角:.
    2. (2) 若延长于点 , 如图所示,试判断的形状,并证明.
    3. (3) 【迁移探究】
      小华将矩形纸片换正方形纸片,继续探究,过程如下:

      将正方形纸片按照操作感知的方式操作,并延长于点 , 连接.当点上时, , 求正方形的边长.

    1. (1) 问题提出

      如图①,在中, , 若P是边上一点,则的最小值为.

    2. (2) 问题探究

      如图②,在中, , 斜边的长为 , E是的中点,P是边上一点,试求的最小值.

    3. (3) 问题解决

      某城区有一个五边形空地(),城建部门计划利用该空地建造一个居民户外活动广场,其中的部分规划为观赏区,用于种植各类鲜花,部分规划为音乐区,供老年合唱团排练合唱或广场舞使用,四边形部分为市民健身广场,如图③所示.已知米,米,.为了进一步提升服务休闲功能,满足市民游园和健身需求,现要在上分别取点E,F,铺设一条由连接而成的步行景观道,已知铺设景观道的成本为100元/米,求铺设完这条步行景观道所需的最低成本.

  • 8. (2023·绿园模拟) 综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动.

    操作:

    操作一:对折正方形纸片 , 使重合,得到折痕 , 把纸片展平;

    操作二:在上选一点P,沿折叠,使点A落在正方形内部点M处,把纸片展平,连接 , 延长于点Q,连接

    1. (1) 探究:

      ①如图①,当点M在上时,      ▲      

      ②改变点P在上的位置(点P不与点A、D重合),如图②,判断的数量关系,并说明理由.

    2. (2) 拓展:若正方形纸片的边长为8,当时,直接写出的长.
  • 9. (2023七下·徐州月考) 将纸片△ABC沿DE折叠使点A落在点A'处.

    【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是      ▲      

    【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.

    【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为      ▲      .

  • 10. (2023·沁阳模拟) 问题情境:

    数学活动课上,同学们开展了以“矩形纸片折叠”为主题的探究活动(每个小组的矩形纸片规格相同),已知矩形纸片宽AB=8,长AD=8.

    动手实践:

    1. (1) 如图1,腾飞小组将矩形纸片ABCD折叠,点A落在BC边上的点处,折痕为BE,连接 , 然后将纸片展平,得到四边形 , 则折痕BE的长为.
    2. (2) 如图2,永攀小组将矩形纸片ABCD沿经过A、C两点的直线折叠,展开后得折痕AC.再将其沿经过点B的直线折叠,使点A落在OC上(O为两条折痕的交点),第二条折痕与AD交于点E.请写出OC与OA的数量关系,并说明理由.
    3. (3) 如图3,探究小组将图1中的四边形剪下,在AE上取中点F,将△ABF沿BF折叠得到△MBF,点P、Q分别是边上的动点(均不与顶点重合),将沿PQ折叠使的对应点N恰好落在BM上,当的一个内角与相等时,请直接写出的长.
  • 11. (2023九下·义乌月考) 定义:在平面直角坐标系中,有一条直线 , 对于任意一个函数,作该函数自变量大于的部分关于直线的轴对称图形,与原函数中自变量大于或等于的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线的“镜面函数”.例如:图① 是函数的图象,则它关于直线的“镜面函数”的图象如图② 所示,且它的“镜面函数”的解析式为 , 也可以写成.

    1. (1) 在图③ 中画出函数关于直线的“镜面函数”的图象.
    2. (2) 函数关于直线的“镜面函数”与直线有三个公共点,求的值.
    3. (3) 已知 , 函数关于直线的“镜面函数”图象与矩形的边恰好有4个交点,求n的取值范围.
  • 12. (2022·西城模拟) 在平面直角坐标系中,对于线段AB与直线 , 给出如下定义:若线段AB关于直线l的对称线段为(分别为点A,B的对应点),则称线段为线段AB的“关联线段”.

    已知点

    1. (1) 线段为线段AB的“关联线段”,点的坐标为 , 则的长为,b的值为
    2. (2) 线段为线段AB的“关联线段”,直线经过点 , 若点都在直线上,连接 , 求的度数;
    3. (3) 点 , 线段为线段AB的“关联线段”,且当b取某个值时,一定存在k使得线段与线段PQ有公共点,直接写出b的取值范围.
    1. (1) [基础巩固]如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,求证:AC2 =AD·AB.
    2. (2) [尝试应用] 如图②,在矩形ABCD中,AD=2,点F在AB上,FB=2AF,DF⊥AC于点E,求AE的长.
    3. (3) [拓展提高] 如图③,在矩形ABCD中,点E在边BC上,NDCE与NDFE关于直线DE对称,点C的对称点F在边AB上,G为AD中点,连结GC交DF于点M,GC∥FE,若AD=2,求GM的长.
  • 14. (2023·博山模拟) 在数学兴趣小组活动中,同学们对菱形的折叠问题进行了探究.如图(1),在菱形中,为锐角,中点,连接 , 将菱形沿折叠,得到四边形 , 点的对应点为点 , 点的对应点为点.

    1. (1) 【观察发现】的位置关系是
    2. (2) 【思考表达】连接 , 判断是否相等,并说明理由;
    3. (3) 如图(2),延长于点 , 连接 , 请探究的度数,并说明理由;
    4. (4) 【综合运用】如图(3),当时,连接 , 延长于点 , 连接 , 请写出之间的数量关系,并说明理由.

微信扫码预览、分享更方便

试卷信息