当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

备考2024年浙江中考数学一轮复习专题25.1图形旋转 基础...

更新时间:2024-03-02 浏览次数:59 类型:一轮复习
一、选择题(每题2分,共20分)
二、填空题(每题2分,共12分)
三、作图题(共3题,共18分)
  • 17. (2023九上·杭州期中) 如图,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,6)在给出的平面直角坐标系中:

    1. (1) 画出△ABC绕点A顺时针旋转90°后得到的△AB1C1;并直接写出B1C1的坐标;
    2. (2) 计算点B旋转到点B1位置时,经过的路径弧BB1的长度.
  • 18. (2023九上·乐清期中) 如图,在直角坐标系中,点A,B的坐标分别是A(-1,1),B(-1,3).

    1. (1) 画出△AOB绕点O顺时针旋转90°后所得的图形△A1OB1
    2. (2) 求出此过程中线段BO扫过图形的面积(结果保留π).
  • 19. (2023九上·新昌期中) 如图,△AOB的三个顶点都在网格的格点上,网格中的每个小正方形的边长均为一个长度单位,以点O建立平面直角坐标系.

    1. (1) 画出△AOB绕点O逆时针旋转90°后所得的图形△A1OB1
    2. (2) 写出点A1B1的坐标;
    3. (3) 求四边形AOA1B1的面积.
四、解答题(共8题,共52分)
  • 20. (2022八下·余姚期末) 求证:在直角坐标系中,点A(x,y)与点B(-x,-y)关于原点成中心对称.
  • 21. (2024九上·福州期末)

    如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.

  • 22. (2023·期中) 如图,在Rt△ABC中, , 点P为边上的一点,将线段绕点A顺时针方向旋转(点P对应点).当旋转至时,点恰好在同一直线上,此时作于点E.

    1. (1) 求证:∠CBP=∠ABP;
    2. (2) 若AB-BC=4,AC=8,求△PBC的面积;
    3. (3) 在(2)的条件下,点N为边上一动点,点M为边上一个动点,连接 , 求的最小值,请直接写出答案.
  • 23. (2024七上·鄞州月考) 如图1, 已知 ,射线 位置出发,以每秒 的速度按顺时针方向向射线 旋转;与此同时, 射线 以每秒 的速度,从 位置出发按逆时针方向向射线 旋转,到达射线 后又以同样的速度按顺时针方向返回,当射线 与射线 重合时,两条射线同时停止运动,设旋转时间为t(s).

     

    1. (1) 当 时, 求 的度数;
    2. (2) 当 重合时,求 的值;
    3. (3) 如图2,在旋转过程中, 若射线 始终平分 ,问:是否存在 的值, 使得 若存在,请直接写出 的值;若不存在,请说明理由.
  • 24. (2021八上·瓯海月考) 如图,在平面直角坐标系中,已知点 , 点 , 其中a,b满足 , 点P从点O出发,沿的路径以每秒2个单位的速度向终点A运动,设运动时间为t秒.

     

    1. (1) 求线段的值.
    2. (2) 是否存在t,使得为等腰三角形,若存在,请求出所有t的值,若不存在,请说明理由.
    3. (3) 当平分时,求t的值.
    4. (4) 线段绕点A按逆时针方向旋转90得到线段 , 连结 , 若该平面内存在点 , 使得的面积相等,则m的值为.
  • 25. (2022九上·长兴开学考) 在平面直角坐标系中,已知点 , 点.

    1. (1) 若将沿轴向右平移个单位,此时点恰好落在反比例函数的图象上,求的值;
    2. (2) 若绕点按逆时针方向旋转.

      ①当时,点恰好落在反比例函数图象上,求的值;

      ②问点能否同时落在(1)中的反比例函数的图象上?若能,直接写出的值;若不能,请说明理由.

  • 26. (2021九上·义乌期中) 定义:在平面直角坐标系中,若两条抛物线的顶点关于原点成中心对称,且二次项系数之积等于﹣2.我们就称其中一条抛物线是另一条抛物线的逆对抛物线.
    1. (1) 写出抛物线y=x2+2x﹣3的顶点坐标,并写出它的逆对抛物线;
    2. (2) 已知抛物线y2=ax2+bx+c是抛物线y1=mx2+4mx+3m的逆对抛物线.

      ①当抛物线y1经过点(﹣2,﹣1)时,求a+b+c的值;

      ②设抛物线y1与x轴的两个交点为A,B(点A在点B的左侧),抛物线y2与x轴的交点为C(在其对称轴左侧).若这三点依次排列后,点B恰好是A,C两点连线的中点,求此时m的值.

  • 27. (2023九上·浙江期中) 如图1,△ABC是⊙O内接三角形将△ABC绕点A逆时针旋转至△AED,其中点D在圆上,点E在线段AC上.

    1. (1) 求证:DE=DC;
    2. (2) 如图2,过点B作BF∥CD分别交AC、AD于点M、N,交⊙O于点F,连结AF.求证:AN·DE=AF·BM:
    3. (3) 在(2)的条件下,若时,求的值.
五、实践探究题(共2题,共18分)
  • 28. (2023八上·绍兴期中) 如图1,四边形ABCD是正方形,E,F分别在边BC和CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法。小明为了解决线段EF,BE,DF之间的关系,将△ADF绕点A顺时针旋转90°后解决了这个问题。

    1. (1) 请直接写出线段EF,BE,DF之间的关系.
    2. (2) 如图3,等腰直角三角形ABD,∠BAD=90°,AB=AD,点E,F在边BD上,且∠EAF=45°,请写出EF,BE,DF之间的关系,并说明理由.
  • 29. (2023七下·婺城期末) 数学兴趣小组围绕“三角形的内角和是”,进行了一系列探究,过程如下:

    1. (1) 【论证】如图1,延长至D,过点 , 就可以说明成立,即:三角形的内角和为 , 请完成上述说理过程.
    2. (2) 【应用】如图2,在中,的平分线与的角平分线交于点 , 过点在射线上,且的延长线与的延长线交于点D.

      ①求的度数;

      ②设 , 请用的代数式表示

    3. (3) 【拓展】如图3,在中, , 过点A作 , 直线相交于A点右侧的点P,绕点以每秒的速度顺时针方向旋转,同时绕点以每秒的速度顺时针方向旋转,与重合时再绕着点以原速度逆时针方向旋转,当旋转一周时,运动全部停止,设运动时间为秒,在旋转过程中,是否某一时刻,使得的一边平行?若存在,求的值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息