准点班次数 |
未准点班次数 |
|
A |
240 |
20 |
B |
210 |
30 |
附: ,
| 0.100 | 0.050 | 0.010 |
| 2.706 | 3.841 | 6.635 |
样本号i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 总和 |
根部横截面积 | 0.04 | 0.06 | 0.04 | 0.08 | 0.08 | 0.05 | 0.05 | 0.07 | 0.07 | 0.06 | 0.6 |
材积量 | 0.25 | 0.40 | 0.22 | 0.54 | 0.51 | 0.34 | 0.36 | 0.46 | 0.42 | 0.40 | 3.9 |
并计算得 .
附:相关系数 .
甲:9.80, 9.70, 9.55, 9.54, 9.48, 9.42, 9.40, 9.35, 9.30, 9.25;
乙:9.78, 9.56, 9.51, 9.36, 9.32, 9.23;
丙:9.85, 9.65, 9.20, 9.16.
假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立
(I)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(II)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计 的数学期望
;
(III)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
不够良好 | 良好 | |
病例组 | 40 | 60 |
对照组 | 10 | 90 |
附:
P(K2 ≥ k) |
0.050 |
0.010 |
0.001 |
K |
3.841 |
6.635 |
10.828 |
疾病风险程度的一项度量指标,记该指标为R.
(i)证明:
(ii)利用该调查数据,给出 的估计值,并利用(i)的结果给出R的估计值.
②已知10人分成一组,分10组,两名感染患者在同一组的概率为 ,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X);
一级品 |
二级品 |
合计 |
|
甲机床 |
150 |
50 |
200 |
乙机床 |
120 |
80 |
200 |
合计 |
270 |
130 |
400 |
附:
旧设备 |
9.8 |
10.3 |
10.0 |
10.2 |
9.9 |
9.8 |
10.0 |
10.1 |
10.2 |
9.7 |
新设备 |
10.1 |
10.4 |
10.1 |
10.0 |
10.1 |
10.3 |
10.6 |
10.5 |
10.4 |
10.5 |
旧设备和新设备生产产品的该项指标的样本平均数分别记为 和
,样本方差分别记为s12和s22
已知小明能正确回答A类问题的概率为0.8 ,能正确回答B类问题的概率为0.6.且能正确回答问题的概率与回答次序无关。
锻炼人次 空气质量等级 |
[0,200] |
(200,400] |
(400,600] |
1(优) |
2 |
16 |
25 |
2(良) |
5 |
10 |
12 |
3(轻度污染) |
6 |
7 |
8 |
4(中度污染) |
7 |
2 |
0 |
附: ,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
人次≤400 |
人次>400 |
|
空气质量好 |
||
空气质量不好 |
附:相关系数r= ,
=1.414.
| | | |
| 32 | 18 | 4 |
| 6 | 8 | 12 |
| 3 | 7 | 10 |
附: ,
| 0.050 0.010 0.001 |
| 3.841 6.635 10.828 |
| | |
| ||
|
男生 |
女生 |
|||
支持 |
不支持 |
支持 |
不支持 |
|
方案一 |
200人 |
400人 |
300人 |
100人 |
方案二 |
350人 |
250人 |
150人 |
250人 |
假设所有学生对活动方案是否支持相互独立.
(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;
(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;
(Ⅲ)将该校学生支持方案的概率估计值记为 ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为
,试比较
与
的大小.(结论不要求证明)
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为 .享受情况如右表,其中“
”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件
发生的概率.
(Ⅰ)用 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量
的分布列和数学期望;
(Ⅱ)设 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件
发生的概率.
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
支付金额 支付方式 |
不大于2000元 |
大于2000元 |
仅使用A |
27人 |
3人 |
仅使用B |
24人 |
1人 |
(I)估计该校学生中上个月A,B两种支付方式都使用的人数;
(II)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(III)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(II)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.
支付金额(元) 支付方式 |
(0,1000] |
(1000,2000] |
大于2000 |
仅使用A |
18人 |
9人 |
3人 |
仅使用B |
10人 |
14人 |
1人 |
(I)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(II)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(III)已知上个月样本学生的支付方式在本月没有变化。现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元,根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
(i)证明: (i=0,1,2,…,7)为等比数列;
(ii)求P4 , 并根据P4的值解释这种试验方案的合理性。
(i)若不对该箱余下的产品作检验,这一箱的检验费用与赔偿费用的和记为 ,求
;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
为了预测该地区2018年的环境基础设施投资额,建立了 与时间变量t的两个线性回归模型,根据2000年至2016年的数据(时间变量
的值依次为1,2,…….,17)建立模型①:
.根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:
超过m | 不超过m | |
第一种生产方式 | ||
第二种生产方式 |
附: ,
电影类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
电影部数 | 140 | 50 | 300 | 200 | 800 | 510 |
好评率 | 0.4 | 0.2 | 0.15 | 0.25 | 0.2 | 0.1 |
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值
假设所有电影是否获得好评相互独立。
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ ”表示第k类电影得到人们喜欢,“
”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6),写出方差
的大小关系。
电影类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
电影部数 | 140 | 50 | 300 | 200 | 800 | 510 |
好评率 | 0.4 | 0.2 | 0.15 | 0.25 | 0.2 | 0.1 |
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;
(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)