①当m=0时,此抛物线图象关于y轴对称;
②若点A(m﹣2,y1),点B(m+1,y2)在此函数图象上,则y1<y2;
③若此抛物线与直线y=x﹣4有且只有一个交点,则;
④无论m为何值,此抛物线的顶点到直线y=2x的距离都等于 .
①求b的值;
②求点A , B之间的距离;
阅读1:a、b为实数,且a>0,b>0,因为 , 所以从而(当a=b时取等号).
阅读2:若函数;(m>0,x>0,m为常数),由阅读1结论可知: , 所以当 , 即时,函数的最小值为 .
阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为 , 周长为2(),求当x= 时,周长的最小值为 ;
问题2:已知函数()与函数(),
当x= 时,的最小值为 ;
问题3:某民办学校每天的支出总费用包含以下三个部分:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
150 | 170 | 190 | 210 | 230 | 250 | 270 | |
①猜想关于的函数类型,求函数解析式,并任选一对对应值验证;
②当滑出速度为多少时,运动员的成绩刚好能达标?
【定义】设抛物线与水平直线交于不重合的两点A、B,过抛物线上点(不同于A、B)作该水平线的垂线,垂足为C.我们把点与点间的距离称为点关于直线的铅垂高,垂足到点和点间的距离分别称为点关于直线的左水平宽和右水平宽,铅垂高与左、右水平宽的乘积的比称为点关于抛物线的“”系数.例如,如图1,抛物线与轴交于点A、B,P是抛物线上一点,轴于点 , 则PC的长为点关于轴的铅垂高,AC,BC的长为点关于轴的左水平宽与右水平宽,的值称为点关于的“"系数.
【应用】校门口的隔离栏通常会涂上呈拋物线形状的醒目颜色,如图3,是一个被12根栏杆等分成13等分的矩形隔离栏示意图,其中颜色的分界处(点C,D)以及点A,点落在同一抛物线上,若第4根栏杆涂色部分(CE)的长为 , 则第6根栏杆涂色部分的长为 .
①求点P的坐标;
②连接CP , 在y轴上是否存在点Q , 使得△CPQ为直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.
①求h关于m的函数解析式,并写出自变量m的取值范围;
②当h=16时,直接写出△BCP的面积.