当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2024年中考数学热点探究十八 几何最值问题

更新时间:2024-04-27 浏览次数:67 类型:二轮复习
一、选择题(每题2分,共20分)
二、填空题(每题2分,共12分)
三、解答题(共4题,共26分)
  • 17. 如图所示,在△ABC中,是斜边AB上一点, , 求的最大值.

  • 18. (2020·漳州模拟) 如图,正方形ABCD中,AB=12,AE AB , 点PBC上运动(不与BC重合),过点PPQEP , 交CD于点Q , 求在点P运动的过程中,BP多长时,CQ有最大值,并求出最大值.

  • 19. 如图所示,AB,CD是半径为5的的两条弦,的直径,于点于点 , 且点E,F位于点的两侧.若为EF上任意一点,求的最小值.

  • 20. (2023九上·历下月考) 材料:对于一个关于的二次三项式 , 除了可以利用配方法求该多项式的取值范围外,爱思考的小宁同学还想到了利用根的判别式的方法,例:求的最小值;
    解:令
    的最小值为
    请利用上述方法解决下列问题:如图,在中, , 高 , 矩形的一边在边上,两点分别在上,于点
    1. (1) 若 , 求矩形的面积;
    2. (2) 设求矩形的面积最大值.
四、实践探究题(共7题,共62分)
  • 21. (2024九下·宁波月考) 根据以下素材,探索完成任务.

    如何确定拍照打卡板

    素材一

    设计师小聪为某商场设计拍照打卡板(如图1),图2为其平面设计图.该打卡板是轴对称图形,由长方形DEFG和等腰三角形ABC组成,且点BFGC四点共线.其中,点ABC的距离为1.2米,米,米.

    素材二

    因考虑牢固耐用,小聪打算选用甲、乙两种材料分别制作长方形DEFG与等腰三角形ABC(两种图形无缝隙拼接),且甲材料的单价为85元/平方米,乙材料的单价为100元/平方米.

    问题解决

    任务一

    推理最大高度

    小聪说:“如果我设计的方案中CB长与CD两点间的距离相等,那么最高点B到地面的距离就是线段DG长”,他的说法对吗?请判断并说明理由.

    任务二

    探究等腰三角形ABC面积

    假设CG长度为x米,等腰三角形ABC的面积为S , 求S关于x的函数表达式.

    任务三

    确定拍照打卡板

    小聪发现他设计的方案中,制作拍照打卡板的总费用不超过180元,请你确定CG长度的最大值.

  • 22. (2024九上·都江堰期末) 阅读下列材料,解决问题:

    配方法是数学中一种很重要的恒等变形方法,我们已经学习了用配方法解一元二次方程,并在此基础上得出了一元二次方程的求根公式.其实配方法还有很多重要的应用.例如我们可以用配方法求代数式的最值及取得最值的条件,如下面的例子:

    例:求多项式的最小值

    解:

    多项式的最小值为−7,此时,

    仿照上面的方法,解决下面的问题:

    1. (1) 当时,多项式有最值是
    2. (2) 若代数式 , 试比较的大小关系;
    3. (3) 如图,在中, , 高 , 矩形的四个顶点分别在三角形的三边上,设 , 矩形的面积为 . 用含有的代数式表示 , 并求出当的值为多少时,的值最大?并判断此时面积的关系.

  • 23. (2023九上·义乌月考) 请根据素材,完成任务.

    素材一

    如图,在Rt中, , 垂足为点 , 若保证始终为直角,则点A、B、C在以AB为直径的圆上.

    素材二

    如图,在Rt△ABC中, , 垂足为点 , 取AB的中点 , 连接OC,根据“直角三角形斜边上的中线等于斜边的一半”可知 , 可得OC≥CD.

    素材三

    如图,矩形ABCD是某实验室侧截面示意图,现需要在室内安装一块长1米的遮光板EF,且EF//AB,点到墙AB的距离为4米,到地面BC的距离为5米.点O为室内光源,OM、ON为光线, , 通过调节光源的位置,可以改变背光工作区的大小.若背光工作区BM+BN的和最大时,该实验室“可利用比”最高.

    任务一

    若素材一中的AB=4,求CD的最大值.

     

    任务二

    若素材二中的CD=6,求AB的最小值.

     

    任务三

    若任务二中的∠ACB=90°改成∠ACB=60°,其余条件不变,请直接写出AB的最小值.

    任务四

    若任务二中的∠ACB=90°,CD=6改成∠ACB=α,CD=m,请直接出AB的最小值.

     

    任务五

    当素材三中的实验室“可利用比”最高,求此时BM+BN的值

     
  • 24. (2021九上·青岛开学考) (实际问题)小明家住 楼.一天,他要把一根 米长的竹竿放入电梯带回家中,如果竹竿恰好刚能放入电梯中(如图①示)那么,电梯的长、宽、高和的最大值是多少米?

    (类比探究)为了解决这个实际问题,我们首先探究下面的数学问题.

    探究:如图②,在 中, .若 ,则 之有什么数量关系?

    解:在 中,

    ,即

    均大于

    之间的数量关系是

    1. (1) 探究2:如图③,在四边形 中, 是对角线, .若 ,则 之间有什么数量关系?

      解:

      将上面三式相加得,

      均大于

      之间有这样的数量关系:

    2. (2) 探究3:如图④,仿照上面的方法探究,在五边形 中, 是对角线, .若 ,则 之间的数量关系是

    3. (3) 当 ,…, 时,若 ,则 之间的数量关系是
    4. (4) 小明家住 楼一天,他要把一根 米长的竹竿放入电梯带回家中,如果竹竿恰好刚能放入电梯中(如图①示),那么,电梯的长、宽、高和的最大值是米.
    5. (5) 公园准备修建一个四边形水池,边长分别为 米, 米, 米, 米,分别以水池四边为边向外建四个正方形花园,若花园面积和为 平方米,则水池的最大周长为米.
  • 25. (2023九下·宿迁开学考)

     

    【问题呈现】如图1,∠AOB=90°, OA=4,OB=5,点P在半径为2的⊙O上,求的最小值.

    【问题解决】小明是这样做的:如图2,在OA上取一点C使得OC=1,这样可得 , 又因为∠COP=∠POA,所以可得△COP ∽△POA,所以 , 得所以.

    又因为 , 所以最小值为      ▲      .

    【思路点拨】小明通过构造相似形(图3),将转化成CP,再利用“两点之间线段”最短”求出CP+ BP的最小值.

    【尝试应用】如图4,∠AOB=60°, OA=10,OB=9,点P是半径为6的⊙O上一动点,求的最小值.

    【能力提升】如图5,∠ABC=120°, BA= BC=8,点D为平面内一点且BD= 3CD,连接AD,则△ABD面积的最大值为      ▲      .

  • 26. (2023·永嘉模拟) 旋转的图形带来结论的奥秘.已知 , 将绕点逆时针旋转得到.

    初步探索

    素材1:

    如图①,连接对应点 , 则.

    素材2:

    如图②,以为圆心,边上的高为半径作 , 则相切.

    问题解决

    (1)(ⅰ)请证明素材1所发现的结论.

    (ⅱ)如图2,过点 , 垂足为.证明途径可以用下面的框图表示,请填写其中的空格.

    深入研究

    (2)在满足的中点,绕点逆时针旋转得.

    (ⅰ)如图③,当边恰好经过点时,连接 , 则的长为.

    (ⅱ)若一时边所在直线恰好经过点 , 于图④中利用无刻度的直尺和圆规作出直线.(只保留作图痕迹)

    (3)在(2)的条件下,如图⑤,在旋转过程中,直线交于点 , 求的最大值为.

  • 27. (2020九上·甘州月考) 阅读下列材料,完成相应的任务

    数学活动课上,老师提出如下问题:

    如图①,在四边形ABCD中,AB⊥BC,DC⊥BC,AB=2,DC=4,BC=8,点P为BC边上的动点,求当BP的值是多少时,AP+DP有最小值,最小值是多少.

    小丽和小明对老师提出的问题进行了合作探究:

    小丽:设BP=x,则CP=8﹣x,根据勾股定理,可得AP+DP= .但没有办法继续求解.

    小明:利用轴对称作图,如图②,作点A关于直线BC的对称点A′,连接A′D,与BC交于点P,根据两点之间线段最短,将求AP+DP的最小值转化为求线段A'D的长.

    由△A′BP∽△DCP,得

    所以BP= .

    过点A′作A′H⊥DC,交DC的延长线于点H,再由勾股定理,可得A′D= =10.

    所以当BP= 时,AP+DP有最小值,最小值为10.

    任务:

    1. (1) 类比探究:对于函数y= ,当x=时,y有最小值,最小值为.
    2. (2) 应用拓展:如图③,若点D在BC上运动,AD⊥BC,AD=3,BC=5.连接AB,AC.求△ABC周长的最小值.

微信扫码预览、分享更方便

试卷信息