①在网格中画出函数的图象;
②若对于函数上的两点 , 当时,总有 , 求出的取值范围.
图1是单板滑雪运动员从大跳台滑雪场地滑出的场景,图2是跳台滑雪场地的横截面示意图.AC垂直于水平底面BC,点D到A之间的滑道呈抛物线型,已知m,m,且点B处于跳台滑道的最低处,在图2中建立适当的平面直角坐标系,求滑道所在抛物线的函数表达式.
如图3,某运动员从点A滑出后的路径满足以下条件:
①运动员滑出路径与D、A之间的抛物线形状相同 ,
②该运动员在底面BC上方竖直距离9.75m处达到最高点P
③落点Q在底面BC下方竖直距离2.25m.
在同一平面直角坐标系中,求运动员到达最高处时与点A的水平距离.
高速摄像机能高度还原运动员的精彩瞬间,如图4,有一台摄像机M进行跟踪拍摄:
①它与点B位于同一高度,且与点B距离25.5m;
②运动过程需在摄像头视角范围内才能记录,记摄像头的俯角为;
③在平面直角坐标系中,设射线MN的解析式为 , 其比例系数k和俯角的函数关系如图5所示.
若要求运动员的落点Q必须在摄像机M的视角范围内,则俯角至少多少度(精确到个位)?
草莓种植大棚的设计 | |
生活背景 | 草莓种植大棚是一种具有保温性能的框架结构.如图示,一般使用钢结构作为骨架,上面覆上一层或多层塑料膜,这样就形成了一个温室空间.大棚的设计要保证通风性且利于采光. |
建立模型 | 如图1,已知某草莓园的种植大棚横截面可以看作抛物线 , 其中点P为抛物线的顶点,大棚高 , 宽 . 现以点O为坐标原点,所在直线为x轴,过点O且垂直于的直线为y轴建立平面直角坐标系.求此抛物线的解析式. 图1 |
解决问题 | 如图2,为方便进出,在大棚横截面中间开了两扇正方形的门,其中 . 求门高的值. 若在某一时刻,太阳光线(假设太阳光线为平行线)透过A点恰好照射到N点,此时大棚横截面在地面上的阴影为线段 , 求此时的长. 图2 |