已知小友喜欢图1中的款、款,喜欢图2中的款,若他打算购买图1的盒玩一盒,且他买到图1中每款玩具的机会相等;他也打算购买图2的盒玩一盒,且他买到图2中每款玩具的机会相等,则他买到的两盒盒玩内的玩具都是他喜欢的款式的概率为何( )
(1)如图1,修建成四边形ABCD的一个储料场,使 , . 新建围墙为BCD.怎样修建围墙才能使储料场的面积最大?最大面积是多少?
(2)爱动脑筋的小聪建议:把新建的围墙建成如图2所示的以A为圆心的圆弧BD,这样修建的储料场面积会更大.聪明的你认为小聪的建议合理吗?请说明理由.
K点是跳台滑雪中打出距离分所用的参照点,此跳台的参照距离是75米,即CK=75米.
距离分=60+2×(跳跃距离-75).
跳跃距离是指起跳点C与着陆点之间的距离.
①若该运动员第一跳的距离分是60分,求此时该抛物线的表达式;
②为了在第二跳中取得更好的成绩,该运动在起跳角度和空中姿势方面做了一定的调整,使得第二跳的飞行轨迹抛物线的表达式为 , 求该运动员此跳的距离分.
①求水线最高点与点B之间的水平距离;
②求水线的最大高度;
③身高的小红要从水线下某点经过,为了不被水喷到,该点与O的水平距离应满足什么条件?请说明理由.
(1)甲、乙两种商品的进货单价分别是多少?
(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:
销售单价x(元/件) | 11 | 19 |
日销售量y(件) | 18 | 2 |
请写出当11≤x≤19时,y与x之间的函数关系式.
(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?
(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)