①求上边缘抛物线的函数解析式,并求喷出水的最大射程 OC;
②求下边缘抛物线与x 轴的正半轴交点B的坐标;
③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围;
小明在练习簿的横线上取点为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.
【提出问题】
小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.
小明利用已学知识和经验,以圆心为原点,过点的横线所在直线为轴,过点且垂直于横线的直线为轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为.
请帮助小明验证他的猜想是否成立.
小明继续思考:设点 , 为正整数,以为直径画 , 是否存在所描的点在上.若存在,求的值;若不存在,说明理由.
(ⅰ)修建一个“”型栅栏,如图2,点 , 在抛物线AED上.设点的横坐标为 , 求栅栏总长l与m之间的函数表达式和l的最大值;
(ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形面积的最大值,及取最大值时点的横坐标的取值范围(在右侧).
如图,某一次函数与二次函数的图象交点为A(-1,0),B(4,5).
②求出点B的坐标;
①求与x之间的函数关系式.
②写出该函数的两条性质.
①若关于x的方程x2-4x-m=0有解,求m的取值范围.小明思考过程如下:由x2-4x-m=0得m=x2-4x,m是关于x的二次函数,根据x的范围可以求出m的取值范围.请你完成解题过程.
②若关于x的方程有解,请直接写出m的取值范围.
①是否存在点Р使得 , 若存在,求出点P坐标,若不存在,请说明理由;
②如图2,连接 , 相交于点M,当的值最大时,求直线的表达式.
【初步探究】
①当AP经过CD的中点N时,求点P的坐标;
②在①的条件下,已知二次函数y=-x2+bx+c的图象经过A、D两点.若将直线AH右侧的抛物线沿AH对折,交y轴于点M,请求出AM的长度.