当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2022~2023学年中考数学一轮复习专题17圆中角度长度计...

更新时间:2022-12-15 浏览次数:139 类型:一轮复习
一、角度问题
二、长度问题
三、切线长问题
四、阴影面积问题
五、圆相关尺规作图
  • 30. (2022·盐城) 证明:垂直于弦的直径平分弦以及弦所对的两条弧.

  • 31. (2022·烟台) 如图,⊙O是△ABC的外接圆,∠ABC=45°.

    1. (1) 请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);
    2. (2) 在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.
  • 32. (2022·潍坊) 如图,的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接 . 以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线 . 下列说法正确的是(  )

    A . 射线一定过点O B . 点O是三条中线的交点 C . 是等边三角形,则 D . 点O不是三条边的垂直平分线的交点
  • 33. (2022·益阳) 如图,在△ABC中,BD平分∠ABC,以点A为圆心,以任意长为半径画弧交射线AB,AC于两点,分别以这两点为圆心,以适当的定长为半径画弧,两弧交于点E,作射线AE,交BD于点I,连接CI,以下说法错误的是(   )

    A . I到AB,AC边的距离相等 B . CI平分∠ACB C . I是△ABC的内心 D . I到A,B,C三点的距离相等
  • 34. (2023九上·永嘉期末) 操作探究题
    1. (1) 已知是半圆的直径,是正整数,且不是3的倍数)是半圆的一个圆心角.

      操作:如图1,分别将半圆的圆心角取1、4、5、10)所对的弧三等分(要求:仅用圆规作图,不写作法,保留作图痕迹);

      交流:当时,可以仅用圆规将半圆的圆心角所对的弧三等分吗?

      探究:你认为当满足什么条件时,就可以仅用圆规将半圆的圆心角所对的弧三等分?说说你的理由.

    2. (2) 如图2,的圆周角 . 为了将这个圆的圆周14等分,请作出它的一条14等分弧(要求:仅用圆规作图,不写作法,保留作图痕迹).

六、正多边形与圆
  • 35. (2022九上·舟山期中) 如图,已知的半径为1,则它的内接正方形的边长为(   )

    A . B . 2 C . 1 D .
  • 36. (2022·雅安) 如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG为(  )

    A . 3 B . C . D . 3
  • 37. (2022·黄石) 我国魏晋时期的数学家刘徽首创割圆术:割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣",即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,…….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长 , 则 . 再利用圆的内接正十二边形来计算圆周率则圆周率约为(   )

    A . B . C . D .
  • 38. (2021九上·南宁期中) 如图,正三角形、正方形、正六边形等正n边形与圆的形状有差异,我们将正n边形与圆的接近程度称为“接近度”.

    1. (1) 角的“接近度”定义:设正n边形的每个内角的度数为 , 将正n边形的“接近度”定义为.于是越小,该正n边形就越接近于圆,

      ①若 , 则该正n边形的“接近度”等于.

      ②若 , 则该正n边形的“接近度”等于.

      ③当“接近度”等于.时,正n边形就成了圆.

    2. (2) 边的“接近度”定义:设一个正n边形的外接圆的半径为R,正n边形的中心到各边的距离为d,将正n边形的“接近度”定义为.分别计算时边的“接近度”,并猜测当边的“接近度”等于多少时,正n边形就成了圆?

微信扫码预览、分享更方便

试卷信息