(截面:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.)
(Ⅰ)利用祖暅原理推导半径为 的球的体积公式时,可以构造如图②所示的几何体 ,几何体 的底面半径和高都为 ,其底面和半球体的底面同在平面 内.设与平面 平行且距离为 的平面 截两个几何体得到两个截面,请在图②中用阴影画出与图①中阴影截面面积相等的图形并给出证明;
(Ⅱ)现将椭圆 所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球 , (如图),类比(Ⅰ)中的方法,探究椭球 的体积公式,并写出椭球 , 的体积之比.
(Ⅰ)过B1作出三棱柱的截面,使截面垂直于AB,并证明;
(Ⅱ)求AC1与平面BCC1B1所成角的正弦值.
(Ⅰ)若E、F为AA1、CC1的中点,画出过D1、E、F的截面;
(Ⅱ)若M、N、P为A1B1、BB1、B1C1上的点(均不与B1重合),求证:△MNP是锐角三角形。