数学考试
1、填写答题卡的内容用2B铅笔填写2、提前 xx 分钟收取答题卡
*注意事项:
(Ⅰ)求曲线 在点 处的切线方程;
(Ⅱ)设 ,讨论函数 在 上的单调性;
(III)证明:对任意的 ,有 .
① ;
② .
(Ⅰ)当 时,
(i)求曲线 在点 处的切线方程;
(ii)求函数 的单调区间和极值;
(Ⅱ)当 时,求证:对任意的 ,且 ,有 .
(Ⅰ)求曲线 的斜率等于 的切线方程;
(Ⅱ)设曲线 在点 处的切线与坐标轴围成的三角形的面积为 ,求 的最小值.
(Ⅰ)若 ,讨论 的单调性;
(Ⅱ)若 ,
(i)证明 恰有两个零点
(ii)设 为 的极值点, 为 的零点,且 ,证明 .
(Ⅰ)求 的单调区间;
(Ⅱ)当 时,证明 ;
(Ⅲ)设 为函数 在区间 内的零点,其中 ,证明 .
(I)求曲线y=f(x)的斜率为1的切线方程;
(II)当x∈[-2,4]时,求证:x-6≤f(x)≤x;
(IlI)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a). 当M(a)最小时,求a的值.
(Ⅰ)求函数 的单调区间;
(Ⅱ)若曲线 在点 处的切线与曲线 在点 处的切线平行,证明 ;
(Ⅲ)证明当 时,存在直线l , 使l是曲线 的切线,也是曲线 的切线.
微信扫码预览、分享更方便
详情